Extensions 1→N→G→Q→1 with N=C22 and Q=D42

Direct product G=N×Q with N=C22 and Q=D42
dρLabelID
C23×D21168C2^3xD21336,227

Semidirect products G=N:Q with N=C22 and Q=D42
extensionφ:Q→Aut NdρLabelID
C22⋊D42 = C2×C7⋊S4φ: D42/C14S3 ⊆ Aut C22426+C2^2:D42336,215
C222D42 = D4×D21φ: D42/D21C2 ⊆ Aut C22844+C2^2:2D42336,198
C223D42 = C2×C217D4φ: D42/C42C2 ⊆ Aut C22168C2^2:3D42336,203

Non-split extensions G=N.Q with N=C22 and Q=D42
extensionφ:Q→Aut NdρLabelID
C22.1D42 = D42D21φ: D42/D21C2 ⊆ Aut C221684-C2^2.1D42336,199
C22.2D42 = D8411C2φ: D42/C42C2 ⊆ Aut C221682C2^2.2D42336,197
C22.3D42 = C4×Dic21central extension (φ=1)336C2^2.3D42336,97
C22.4D42 = C42.4Q8central extension (φ=1)336C2^2.4D42336,98
C22.5D42 = C84⋊C4central extension (φ=1)336C2^2.5D42336,99
C22.6D42 = C2.D84central extension (φ=1)168C2^2.6D42336,100
C22.7D42 = C42.38D4central extension (φ=1)168C2^2.7D42336,105
C22.8D42 = C2×Dic42central extension (φ=1)336C2^2.8D42336,194
C22.9D42 = C2×C4×D21central extension (φ=1)168C2^2.9D42336,195
C22.10D42 = C2×D84central extension (φ=1)168C2^2.10D42336,196
C22.11D42 = C22×Dic21central extension (φ=1)336C2^2.11D42336,202

׿
×
𝔽